
~ )  Pergamon 
lnt. J. Heat Mass TransJer. Vol. 39, No. 9, pp. 1979 1991,1996 

Copyright © 1996 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

00174310/96 $15.00+0.00 

0017-9310(95) 00239-1 

Mechanical quasi-equilibrium and 
therrnovibrational convective instability in 

an inclined fluid layer 
V. A. DEMIN,  G. Z. G E R S H U N I  and I. V. V E R K H O L A N T S E V  

Department of Theoretical Physics, Perm State University, 614600, Perm, Russia 

(Received 5 May 1995) 

Abstract--The linear stability of mechanical quasi-equilibrium of a long inclined plane fluid layer, in the 
presence of a constant temperature gradient, subject to a static gravity field and high frequency vibration 
is investigated theoretically. The layer is oriented in an arbitrary respect to the vertical. The boundaries of 
the layer are.. assumed to be rigid and highly conducting. Each of two vectors--the temperature gradient 
and the axis of vibration--can have one of the four orientations: vertical (v), longitudinal (l), horizontal 
(h), and transversal (t). Thus a total of sixteen situations are studied. The consideration is based on the 
equations system describing mean (averaged) fields in the frame of an averaging method. The possibility 
and necessary conditions of mechanical quasi-equilibrium existance are studied. The spectral amplitude 
problem for small two-dimensional normal disturbances is formulated. In the case of long-wave instability, 
the spectral problem is solved asymptotically using the wave number as a small parameter for expansion. 
In the case o:ran arbitrary value of wave number, the spectral problem is solved numerically. The boundaries 
of stability and critical disturbance characteristics are determined for all the sixteen cases mentioned before. 

1. INTRODUCTION 

It is known that the vibration of a cavity filled with 
fluid in the presence of temperature inhomogeneity 
may induce regular averaged flows, even when static 
gravity is absent, i.e. in the state of weightlessness (the 
phenomenon of thermovibrational convection) [1,2]. 
In the limiting case of high frequency and small ampli- 
tude of vibration, the method of averaging may be 
applied for the analysis which is often used in different 
branches of physics and mechanics (see ref. [3]). The 
method results in receiving a closed equation system 
describing the behaviour of average fields of velocity, 
temperature and pressure. In thermal convection the- 
ory the method of averaging was first developed in 
ref. [4], where the., effect of  high frequency vertical 
vibration on the convective stability of horizontal fluid 
layer was studied. 

Under  certain conditions the mechanical quasi- 
equilibrium is possible, i.e. the state at which the aver- 
aged velocity is absent but  pulsational component  
exists, in general. The conditions of mechanical quasi- 
equilibrium in weightlessness were first ascertained 
and the stability problem was formulated in refs. [1,2]. 
In these papers the stability of plane layer in the pres- 
ence of transversal temperature gradient and arbitrary 
orientation of vibration axis was investigated. Some 
other examples cf  quasi-equilibrium situations in 
weightlessness with analysis of linear stability are also 
presented. In refs. [5-7] the special case of a plane 
layer in weightlessness for different mutual  orien- 

tations of temperature gradient and axis of vibration 
was analysed. The effect of  thermal boundary con- 
ditions on the stability of plane layer in the presence 
of transversal temperature gradient and longitudinal 
vibration is studied in ref. [8]. 

In the general case when a static gravity field exists, 
both mechanisms of excitation are operative---thermo- 
gravitational and thermovibrational.  In ref. [9] a 
horizontal plane fluid layer with rigid and isothermal 
boundaries was studied in the presence of a transversal 
temperature gradient and a high frequency vibrational 
field with longitudinal vibration axis. The appearance 
of instability when the system is heated from above, 
demonstrates the existance of a specific thermo- 
vibrational mechanism of excitation. Experimental 
results presented in ref. [10] are in a good conformity 
with theoretical ones. Refs. [11-13] are devoted to the 
study of thermovibrational quasi-equilibrium con- 
vective stability of a horizontal fluid layer with 
internal heat sources ; few variants of thermal bound- 
ary conditions are discussed. Experimental data [14] 
confirms theoretical predictions. The special case of a 
fluid layer with exothermic reaction of the Arrenius- 
type is considered in ref. [15]. In ref. [16] plane-parallel 
vibrational convective flows in an inclined fluid layer 
subject to longitudinal temperature gradient are stud- 
ied. In some cases mechanical quasi-equilibrium is 
possible as the result of mutual  compensation of gravi- 
tational and vibrational volume forces. The stability 
criterium for this quasi-equilibrium state is deter- 
mined, but  only against long wave disturbances. 

1979 
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NOMENCLATURE 

A temperature gradient fl 
b amplitude of displacement 7 
D operator (d 2/dx2) - k 2 
J(x) amplitude of F-disturbance A 
F stream-function for w e 
g acceleration of gravity 2 
h one half of layer thickness O(x) 
k wave number 
m(mx, O, mz) unit-vector along temperature 

gradient v 
n(nx, 0, n~) unit-vector along axis of Z 

vibration p 
p pressure ~k 
Pr Prandtl number q~(x) 
Ra Rayleigh number 
Ray vibrational Rayleigh number Vtp 
t time 
T temperature 
v(vx, vy, v.) velocity 
w(wx, Wy, Wz) solenoidal part of vector field 

Tn 
(x, y, z) Cartesian coordinates. 

coefficient of thermal expansion 
unit-vector along vertical directed 
upward 
Laplace operator 
dimensional vibrational parameter 
decrement 
amplitude of temperature disturbance 
non-dimensional vibrational 
parameter 
coefficient of kinematic viscosity 
coefficient of thermal diffusivity 
reference value of density 
stream-function for v 
amplitude of stream-function 
disturbance 
potential part of vector field Tn 
angular frequency. 

Subscripts 
0 equilibrium field 
m extremal value 
c critical value. 

Greek symbols 
angle of inclination 

Superscripts 
(') disturbance. 

In our short review we are concerned with only 
the papers devoted to the study of mechanical quasi- 
equilibrium convective stability in the presence of high 
frequency vibrations. Additional bibliography regard- 
ing some other aspects of thermovibrational con- 
vection can be found in ref. [17]. 

In the present work we study the mechanical quasi- 
equilibrium linear convective stability of a plane fluid 
layer arbitrarily inclined to the vertical. A total of 
sixteen variants of orientations of equilibrium tem- 
perature gradient and vibration axis with respect to 
the layer are considered, corresponding to four inde- 
pendent orientations of both vectors: vertical (v), 
longitudinal (/), horizontal (h) and transversal (t). 
Thus the situation (v, t) means, for example, that the 
temperature equilibrium gradient is vertical, whereas 
the axis of vibration is transversal, etc. For each case 
the possibility and conditions of quasi-equilibrium 
state are determined, and linear stability analysis is 
developed. The boundaries of stability for arbitrary 
normal modes and critical disturbance characteristics 
are determined. 

In Section 2 the statement of the problem is given 
and the basic equations system for averaged fields is 
written. Non-dimensional parameters of the problem 
are listed. The general conditions of mechanical quasi- 
equilibrium are presented in Section 3. Section 4 con- 
tains the stability problem formulation for two- 

dimensional disturbances of the normal-mode type. 
The spectral amplitude eigenvalue problem is for- 
mulated. The limiting case of long-wave disturbance 
is considered. In Section 5 the results of quasi-equi- 
librium and stability analysis are presented and dis- 
cussed. 

2. STATEMENT OF THE PROBLEM. BASIC 
EQUATIONS 

Consider a plane fluid layer bounded by two parallel 
rigid plates. The layer is inclined with respect to the 
vertical, the angle of inclination is ~. The system of 
coordinates is shown in Fig. 1. The layer is infinitely 
long in both directions, y and z. All of  the system 
linearly and harmonically oscillates with a high angu- 
lar frequency ~ and a small displacement amplitude 
b in a direction which is characterized by the unit- 
vector n. We consider the situations, when inhomo- 
geneity of temperature exists ; the conditions of heat- 
ing will be formulated in concrete form later. 

In the presence of a static gravity field and 
vibration, the convection is caused by two different 
mechanisms--thermogravitational and thermo- 
vibrational. We shall use for analysis the equation 
system governing the behaviour of averaged fields of 
velocity, temperature and convective pressure. This 
system is derived from standard Boussinesq equations 
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Fig. 1. Geometry c,f the problem and coordinate system. 

temperature gradient), pvz/h 2 for pressure. A non-  
dimensional form of the equations may be written, 
therefore, as 

0v 1 
Ot + Prr (vV)v = - Vp + Av + Ra" T~, 

+Rav "(wV) ( T n -  w) (5) 

t3T 
P r ' ~  + v V T  = AT (6) 

div v = 0 (7) 

d i v w = 0  r o t w = V T × n .  (8) 

The system includes the following set of non-dimen- 
sional parameters: the Rayleigh number  Ra, the 
vibrational analog of Rayleigh number  Ra~ and the 
Prandtl  number  Pr 

for free thermal convection, with the help of averaging 
method, and can be written in the form 

0v 
1 Vp + vAv +gflT~ ~S + (vV)v = - 

+ ~(wV)(Tn-- w) (1) 

0T 
~ -  + v V T  = zAT (2) 

div v = 0 (3) 

divw = 0 rotw = V T x n .  (4) 

Here v, T, p are averaged fields of velocity, tem- 
perature and pressure--slowly varying with time vari- 
ables; w is an additionally "slow" variable, it is the 
solenoidal part of vector-field Tn: Tn = w+V~0 (Vtp 
is potential part of  Tn), on the other hand, w is pro- 
portional to the anaplitude of oscillatory velocity com- 
ponent  ; 7 ( -  sin ct, 0, cos a) is the unit-vector directed 
vertically upward;  n(nx, 0, nz) is the unit-vector 
directed along the vibration axis; r ,  v, Z, are the 
coefficients of thelmal expansion, kinematic viscosity 
and heat diffusivity, respectively; p is the reference 
value of density; e is dimensional vibrational 
parameter, appearing in the limiting case of high fre- 
quency 1) and small displacement amplitude b in the 
frame of averaging approach : e = ½(flbfl) 2. 

The boundaries of the layer x = _+ h are assumed 
to be rigid. So the non-slip conditions for mean vel- 
ocity and non-overflowing for an oscillatory com- 
ponent  should be imposed : x = _+ h : v -- 0, w~ = 0. 
As for boundary  conditions for temperature, note that 
hereafter we shall consider, in the main, the situations 
when quasi-equilibrium is possible. So the tem- 
perature must be distributed on the boundaries in such 
a manner  as to permit the quasi-equilibrium existence. 

The system of equations (1)-(4) may be non-dimen- 
sionalized with the help of the following units : h for 
distance, h2/v for time, )~/h for velocity, Ah for tem- 
perature gradient and w--field (A is characteristic 

@ A n '  (#abAh2) 2 v 
Ra = Ra, Pr = . (9) 

v~ 2v~ )~ 

The additional parameters of the problem are : the 
angle of inclination c~ ; the components of vector n, nx 
and nz, describing the orientation of vibration axis. In 
the case of equilibrium, when the temperature gradi- 
ent is constant, VT = m, two extra parameters appear, 
mx and m~, describing the orientation of equilibrium 
temperature gradient. Note that Rav is positive as a 
definition. 

3. MECHANICAL QUASI-EQUILIBRIUM 

Let us now write the conditions of mechanical 
quasi-equilibrium, i.e. the state at which mean velocity 
(v) is zero but  oscillatory component  (w) is not  zero, 
in general. These conditions can be deducted from 
general systems (5)-(8). Assuming 

0 
v = 0  ~ = 0  and P = P 0  T = T 0  w = w 0  

and taking rot-operation of both sides of equation (5), 
we thus find the necessary conditions of mechanical 
quasi-equilibrium : 

Ra'(VTo x ~ ) + R a v  "V(won) xVTo = 0 (10) 

AT = 0 (11) 

divw0 = 0 rotwo = VTo ×n.  (12) 

Here To and Wo are the equilibrium fields of T and 
W. 

We shall discuss the special class of equilibrium 
when temperature gradient is constant, i.e. VTo = m 
(in non-dimensional  form), m is the unit-vector 
directed along the equilibrium temperature gradient. 
The Laplace equation (l l) in this case is satisfied 
automatically, and we have 

R a ' ( m x ~ ) + R a v ' V ( w o n ) × m = O  (13) 

divwo = 0 rotwo = m x n .  (14) 
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All the vectors, V, m and n are assumed to he belong- 
ing to the same vertical plane (x, y). Then assume that 
in the quasi-equilibrium state the oscillatory com- 
ponent of  velocity is longitudinal, i.e. w0(0, 0, %) 
where w0 = Wo(X). So the field w0 is solenoidal and 
satisfies the boundary conditions w0, = 0 at x = _+ 1. 
The profile of  wo(x) is deduced from equation (14) 
and is 

Wo(X) = (mxn~-m~nx) "x. (15) 

Note  that profile wo(x) satisfies also the closure 
condition, i.e. the total oscillatory flux through the 
layer section is equal to zero 

f -i Wo(X)dx = O. (16) 
1 

Substituting equation (15) into equation (13), we 
may write ' the hydrostatics equation'  in the form 

Ra'(m~ sin ~+m~ cos c 0 

+Ra~" (m~n._-m._n~)'m~n~ = O. (17) 

Hereafter we shall consider some discrete sets of  
configurations. Each configuration corresponds to 
one of  the sixteen variants of  directions of  both vectors 
m and n with respect to the layer: vertical, longi- 
tudinal, horizontal and transversal. All the con- 
figurations are listed below and shown in Fig. 2 : 

(v,v) (v,l) (v,h) (v,t) 

(l,v) (1, l) (l,h) (1, t) 

(h, v) (h, t) (h,h) (h, t) 

(t, ~) (t,l) (t,h) (t, t )  

(18) 

The first symbol corresponds to the direction of  
vector m, the second one to n. 

The objective is to study every configuration and to 
answer the question whether mechanical quasi-equi- 
librium exists or not. In the case when mechanical 
quasi-equilibrium is possible, the problem appears to 
investigate its stability against small disturbances. 

aT  
P r ' ~  + (v 'm)  = AT '  (21) 

div v = 0 (22) 

div w' = 0 rot w' = VT' x n. (23) 

The boundaries of  the layer are assumed to be rigid 
and highly conducting. So the boundary conditions 
are 

x =  + 1 :  v = 0  T ' = 0  w~,=0.  (24) 

In ref. [2] it was shown that in the case of  weight- 
lessness (Ra = 0) two-dimensional disturbances are 
most dangerous. We suppose that there is reason to 
consider two-dimensional disturbances in our more 
general case when static gravity field exists. So we 
consider the disturbances of  following structure : 

v(vx, 0, v.) w ' (G,  0, w3 7-  = 0 
oy 

and introduce the stream functions ~ and F for the 
solenoidal fields v and w', respectively : 

c~ff 0~9 w~, 0F ,, aF  
v , = T z  z v = = - & ;  = ~ z  ~ = -  ex" 

(25) 

The system of  equations for disturbances in terms 
of  ~O, F and T' can be written in the form 

--Ray" n~(mxnz--m~nx) 3z 

02F O2F 
--m.n: ~x 2 --mxnx Oz 2 

632F] 
+ (mxnz + mznx) (26) 

4. STABILITY PROBLEM FORMULATION 

To study the convective stability of  quasi-equi- 
librium state consider perturbed fields 

v T =  To+T'  P = P o + P '  w = w 0 - - w ' .  

(19) 

Here v, T', p ' ,  w' are small disturbances. After sub- 
stitution of  equation (19) into basic systems (5)-(8) 
and linearization, we obtain the system of equations 
for disturbances 

~v 
Ot = - Vp' + Av + Ra T'~ +Rav" [(w0 V) (T'n -- w') 

+ (w'V)(T0n-w0)]  (20) 

P r ' ~ t  + mx ~z -m. ,  ~x = A T '  (27) 

~T '  OT' 
AF  = nx Ozz --n~ 0x " (28) 

Here A is the two-dimensional Laplace-operator.  
Now introduce the disturbances in the form of  nor- 

mal modes 

(F,~, T') = (f(x),qg(x),~(x))" exp(--  2t + ikz), (29) 

wheref(x) ,  ~p(x) and ~9(x) are the amplitudes, k is the 
wave number and 2 is the decrement. The substitution 
of  equation (29) into systems (26)-(29) yields a system 
of  linear homogeneous ordinary differential equations 



Mechanical quasi-equilibrium and thermovibrational convective instability 1983 

/z 

(v,  I) 

/ 
/ 

(v,  h) 

/ <. 
(v, t) i ,¥ z 

( 
/ 

(h, v) l bY/ 

( t , v )  n i /  / z  

/ -,( 

(t, t) , l ~/ 

Fig. 2. List of configurations considered. 

for amplitudes 

- 2Dip = D 2 tp - R a ( i k 8  sin ~t + 8' cos ~) 

- Ray"  [iknz (m,n~ - mznx) 8 -  m z n ; f "  

+ k 2 m x n x f +  ik(mxnz + rn=G)f ']  (30) 

- 2 P r ~ + ( i k m ~ q J - m z t p )  = D 8  (31) 

D f  = i kn ,8 - -n=8 ' .  (32) 

Here and hereafter, prime means differentiation 
respect to transversal coordinate x, and D is the oper- 
ator 

d 2 _ k 2. 
D = dx: 

The amplitudes must satisfy the following homo- 
geneous boundary conditions : 

x = + l :  ~0=~p '=0  f = 0  8 = 0 .  (33) 

The system of amplitude equations (30)-(32) 
together with boundary conditions (33) form the spec- 
tral amplitude problem with decrement 2 as an eigen- 
value, depending on all the parameters of the problem. 
If the decrement is real, then the stability boundary is 
determined from the condition 2 = 0. In the case when 
2 is complex, 2 = 2,+ i21, then the stability boundary 
can be determined from the condition 2r = 0 and 2i is 
in this case the neutral frequency of oscillatory dis- 
turbance. It is necessary to emphasize that the eig- 
envalue problem equations (30)-(33) are sensible only 
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in the case when the parameters of  the problem are 
connected by the relation (17), which is the condition 
of  quasi-equilibrium existance. 

It is known that in the case when vibration is absent 
(Rav= 0) the long-wave mode is most dangerous in 
some region of  the parameters values (see ref. [18]). 
In this region the neutral curves on the plane (the 
critical Rayleigh number Ra and the wave number k) 
have a minimum at the value k m = 0. We may expect 
that in our case, when a vibration field exists, the long- 
wave mode will also play an important  role. 

Substituting k = 0 and 2 = 0 into the system equa- 
tions (30)-(32) we obtain the system of amplitude 
equations for neutral monotonous  long-wave dis- 
turbances 

q~i"--(Ra'coso:--Rav "m:'n~)"0' = 0 (34) 

m=qg'+~9" = 0. (35) 

The boundary conditions are 

x =  _+1: q ~ = q / = 0  0 = 0 .  (36) 

The solution of  the eigenvalue problem equations 
(34)-(35) can be written in the form (the first level of  
the spectrum) 

m z . 
q~ = cos~rx+ 1 0 = - - - s m ~ x .  (37) 

7T 

The condition of  non-trivial solution existence leads 
to the stability boundary against long-wave dis- 
turbances 

71.4 
Ra" cos ~ + Ray" m:" n 2 = - - - .  (38) 

m z  

The stability boundary determined by this relation 
corresponds to the mode with k = 0. To find out 
whether this mode is very dangerous or not, it is 
necessary to compare with the results obtained for the 
case of  finite k. The solution of  the complete amplitude 
problem equations (30)-(33) for the case of  arbitrary 
wave number was found numerically. The Runge-  
Kutta  method of  straightforward step-by-step 
numerical integration was used in combination with 
a shooting procedure. 

5. RESULTS AND DISCUSSION 

Case (v, v) 
We begin with the case when both vectors, the tem- 

perature gradient and the axis of  vibration, are verti- 
cal. In this case rnx = sin ~, me = - c o s  c~, nx = - s i n  

and nz = cos ~. As we can see, equation (15) then 
leads to w0 = 0. Thus we have to deal with the case of  
real equilibrium, namely with the state when both 
averaged and oscillatory components of  velocity are 
equal to zero. The inspection of  'hydrostatics equa- 
tion'  (13) or  (17) shows that mechanical equilibrium 
is possible at arbitrary values of  both regime 
parameters, Ra and Ray, since [mx ~] = 0 and w0 = 0. 

In the absence of  vibration, Rav= 0, the problem 
reduces to the one which describes the stability of  
equilibrium in an inclined fluid layer in a static gravity 
field when heated from below. The solution of  this 
problem is known (see ref. [18]). In the vertical layer 
the threshold of  convertion is connected with long- 
wave disturbances evolution. The long-wave mode is 
still very dangerous when the angle of  inclination is 
small: ~ < 70 where ~0 is a critical value which is 
~0 ~ 21 °. I f  c~ exceeds the critical value ~0 the transition 
to cellular node with k m =/: 0 takes place. In the limiting 
case ~ ~ 90 ° we obtain the classical Rayleigh-Benard 
problem on the stability of  a plane horizontal layer 
heated from below. The critical parameters of  insta- 
bility are: the minimal critical Rayleigh number is 
Ram = 106.7 and the critical wave number is km= 1.56 
(recall that in this paper one half  of  the layer thickness 
is chosen as a unit for distance). 

Now consider the effect of  high frequency 
vibrations on the equilibrium stability. 

In Fig. 3 the families of  neutral curves in the plane 
(critical Rayleigh number Ra - -wave  number k) for 
two angles of  inclination and a few values of  
vibrational Rayleigh number Rav are presented. As 
can be seen, in the region of  small angles of  inclination 
(Fig. 3a), the boundary of  stability is connected with 
long-wave modes if Ray is relatively small (the neutral 
curves have minimums at k m = 0), whereas in the 
region of  large Ray the instability is caused by cellular 
modes (the minimums correspond to finite km ~ 0). 
The situation is different if ~ = 50 ° (Fig. 3b). In this 
case the instability is of  cellular character in the region 
of  relatively small Ray and becomes a long-wave one 
when Ra~ is large enough. The calculations show that 
when the orientation of  the layer is close to horizontal, 
the cellular character of  instability is kept up to very 
large values of  Ra~. 

The summary results are given in Fig. 4, where the 
critical Rayleigh number Ram (minimized with respect 
to k) and critical wave number km are presented as the 
functions of  inclination angle ~ for few values of  Rav. 
From Fig. 4a it is seen that in all the interval of  the 
inclination angle, 0 ° ~< c~ ~< 90 °, the critical value Ram 
increases monotonously as far as Rav increases (sta- 
bilization). In the region of  relatively small Ra~ the 
instability is of  long-wave form when the orientation 
of  the layer is close to vertical one and transition to 
cellular form takes place when ~ increases (Fig. 4b). 
If  Ra~ is large enough there is the region of  long-wave 
instability at intermediate angles of  inclination ~. The 
boundaries of  stability are obtained numerically, but 
in the region where long-wave modes are most danger- 
ous and responsible for instability, there is a good 
conformity with the formula (35) which is in our case 

~4 
Ra = +Rav" cos 2 ~. (39) 

COS 2 

Finally we present the critical values of  Ram as func- 
tions of  Ray for two limiting cases of  the layer orien- 
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Fig. 4. Critical instability parameters as functions of 
inclination angle; (v, v); (a) critical Rayleigh numbers 
(dotted parts of the curves correspond to long-wave mode), 

(b) critical wave numbers. 

tation, vertical (~ = 0 °) and horizontal (ce = 90 °) (Fig. 
5). The calculation:~ show that in the region of large 
values of Ray for ~ = 90 ° the asymptotics takes place 

Ram = 11.4 "(Ray) 1/2. (40) 

This relation means that it is possible to introduce 
the non-dimensional  vibrational parameter 

bt2 

which is not  deperLdent on temperature gradient. If  
× < ~o = 0.124 then instability takes place in the 
region of large R a ;  if × > ~o the equilibrium is absol- 
utely stable (see ret: [18]). This theoretical prediction 

was confirmed experimentally in ref. [10]. The exper- 
imental value of the critical parameter is ~0 = 0.16. 
The discrepancy is maybe caused by the hard charac- 
ter of convection excitation which was observed in the 
experiments. 

We may summarize that in the case considered the 
specific thermovibrational mechanism of excitation is 
not  operative. The effect of high frequency vibrations 
is only a stabilizing one. 

Case (v, 1) 
Now consider the case at which the quasi-equi- 

librium temperature gradient is vertical, as in the pre- 
vious case (v, v), but  the axis of vibration is longi- 
tudinal, i.e. mx = sin~, m~ = - c o s ~ ,  nx = 0, nz = 1 
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Fig. 5. Critical Rayleigh number as a function of Ray for 
two limiting orientations of the layer; (v, v); 1--vertical 

orientation (ct = 0°), 2--horizontal orientation (a = 90°). 

and w0 = sin ct- x. Since [mx ~,] = 0 the hydrostatics 
equation (17) yields 

Ray" sin ~" cos ct = 0. (41) 

If  Rav= 0 (vibration is absent) then the equilibrium 
in the static gravity field exists at an arbitrary value 
of  the inclination angle ; the result of  stability analysis 
is presented in Fig. 4a, curve Ray = 0. I f  both the 
parameters Ra and Ray have arbitrary values then 
there are only two limiting orientations, ct = 0 ° and 
ct = 90 °, when quasi-equilibrium is possible. The case 

= 0 ° (vertical layer in the presence of  longitudinal 
temperature gradient and axis of  vibration) is already 
considered for in this case the configurations (v, v) 
and (v, /)  coincide. The critical values Ra are shown 
in Fig. 5, curve 1. 

The configuration ~ = 90 ° (horizontal layer in the 
presence of  transversal temperature gradient and 
longitudinal axis of  vibration) is maybe one of  the 
most interesting, because in this configuration the 
active role of  the thermovibrat ional  instability mech- 
anism is distinctly revealed. The theoretical results 
were obtained in ref. [9] and confirmed experimentally 
in ref. [10]. We present here the results for com- 
pleteness in Fig. 6. The boundary of  stability in the 
plane (Ra, Rav) is almost a straight line. The point 
corresponding to Ray = 0 gives the boundary of  the 
Rayleigh-Benard convective stability of  a horizontal 
layer heated from below. The point Ra = 0 cor- 
responds to the boundary of  thermovibrational con- 
vective stability in weightlessness. The critical par- 
ameters are Ravin = 133.1 and km = 1.61, or if we 
choose the total thickness of  the layer as the unit of  
distance, then Ravm = 2129 and km = 3,23 (see ref. 
[1]). The existence of  instability in the region Ra < 0 
corresponding to the heating from above, is the 
straight consequence of  the operative activity of  ther- 
movibrat ional  excitation mechanism. 

It is possibly to show that in the case of  a horizontal 
orientation (ct = 90 °) in the presence of  a transversal 

1 0 0 0 -  

-600 -400 -200 0 
Ra 

Fig. 6. The boundary of stability ; (v, l) ; ct = 90 °. Solid 
curve--theory [9], points--experiment [10]. 

temperature gradient the quasi-equilibrium exists even 
at an arbitrary direction of  the vibration axis with 
respect to the layer. The stability curves in the plane 
(Ra, Ray) are presented in Fig. 7 for different values 
of  the inclination angle fl of  the vibration axis to the 
horizontal (the minimization with respect to the wave 
number k is made). 

Case (v, h) 
This case corresponds to the vertical temperature 

gradient and horizontal axis of  vibration : mx = sin ct, 
m~ = - c o s  ~, nx = cos~, nz = sinct and w0 = x. Equa- 
tion (17) in this case reduces to equation (41). As in 
the case (v, / )  there are only two orientations of  the 
layer, vertical (~ = 0 °) and horizontal (ct = 90°), at 
which the quasi-equilibrium state is possible for arbi- 
trary values of  Ra and Rav. The case of  ct = 90 ° is 
already considered; the results are presented in Fig. 
6. The case of  ~ = 0 °, a vertical layer subject to longi- 
tudinal temperature gradient and transversal (hori- 
zontal) vibrations, is not  studied yet. The stability 
boundary against long-wave mode can be found from 

750 

~ 2 0  o 

25O 

/,/ 
// 

I I 
- 1 2 5  0 125 2 5 0  

R a  

Fig. 7. The boundaries of stability for the case of horizontal 
layer with transversal temperature gradient; fl is an angle 

between the axis of vibration and horizontal. 
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Fig. 8. Neutral curves for different values of Ra~ ; (o, h) ; 
= 0 °. 
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equation (38). The critical Rayleigh number is 
Ra = 7: and does not  depend on Ra~. The neutral 
curves for few value:~ of  Rav are presented in Fig. 8. It 
is seen that the effect of  vibration is a stabilizing one 
and the long-wave raode is most dangerous. 

Case (v, t) 
In this case mx= sin s, rnz = - cos s, nx = 1, nz = 0 

and w 0 = - c o s ~ ' x ;  besides [ m × ~ , ] = 0  and 
(won) = 0. Thus the quasi-equilibrium state is possible 
at arbitrary values of Ra, Rav and ~. The results of  
numerical determination of  critical instability charac- 
teristics are presented in Figs. 9 and 10. The examples 
of  neutral curves are given in Fig. 9 for two values 
of  inclination angle. The critical minimal Rayleigh 
numbers and wave numbers are presented in Fig. 10 
as functions of  s fi)r different values of  vibrational 
Rayleigh number Rav. As we can see, for fixed value 
of  Ra~, instability is caused by long-wave mode in the 
region 0 ° ~< s ~< 70- If  ~ > s0 then transition to the 
cellular form of  insLability takes place ( k  m 5 ~ 0 ) .  The 
critical value of  the angle inclination is s0 g 21 ° when 
Rav= 0 and increases monotonously as far as Ra~ 
increases. In the region 0 ° ~< s ~< s0 formula (38) for 
minimal critical values of  Rayleigh number is valid. 
So, in our case Ram = ~4/COS2 ~- 

Case (1, v) 
Now we begin to consider the configurations cor- 

responding to the second line of  the set (18). In the 
case (l, v) we have m x =  0, mz = - 1 ,  nx = - s i n ~ ,  
nz = cos s and w0 = - sin s" x. Equat ion (17) leads to 

sin s ( R a -  Ray" cos c~) = 0. (42) 

The first root of  this equation is sin ~ = 0, i.e. ~ = 0 ° 
and corresponds to the vertical orientation with longi- 
tudinal temperature gradient and vibration axis. The 
equilibrium is possible at arbitrary values of  Ra and 
Ray. This case is already studied, see Fig. 5, curve 1. 

The second root  corresponds to Ra--Rav" 

(b) 

R. v ~ tO 000 
8OO 

(l = 70 e 

6OO 

4OO 

2 0 0  Rav = 0 

0 I 2 3 

k 

Fig. 9. Neutral curves for different values of Ray ; (v, t) ; (a) 
= 30 °, (b) ~ = 70 °. 

cos s = 0. That  means that quasi-equilibrium is poss- 
ible at an arbitrary inclination but only if  Ra, Ray 
and s are connected by quite definite relation, namely 
Ra = Ray" cos c~. For  limiting case s = 0 ° we may find 
the boundary of  stability from Fig. 5, curve 1. If  
Ra = Ray we have the critical condition 
R a =  Ray = 530. In the opposite limiting case, 
s = 90 °, we obtain Ra = 0. Thus, mechanical quasi- 
equilibrium exists at arbitrary values of  Ray, but only 
in the case of  pure weightlessness (Ra = 0). The analy- 
sis performed in ref. [7] shows that the quasi-equi- 
librium state in weightlessness in the presence of  longi- 
tudinal temperature gradient and transversal axis of  
vibration is absolutely stable. So we may expect that 
critical value Rav~ ---, oo as far as ~ --, 90 °. 

The numerical results are presented in Fig. 11, 
curves 1. It is seen that in all the interval of  inclination 
angle 0 ° ~< s < 90 ° the instability is caused by cellular 
mode with the wave number  km decreasing mon- 
otonously when s is increasing. 
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Fig. 10. Critical instability parameters as functions of  incli- 
nation angle ; (v, t) ; (a) critical Rayleigh numbers,  (b) critical 

wave numbers.  

Case (1, 1) 
N o w m x = 0 ,  m z = - l ,  n x = 0 ,  n z = l  a n d w 0 = 0 .  

The equilibrium is possible only in the case of  vertical 
orientation, ct = 0 °, at arbitrary Ra and Ray. The 
boundary of  stability is described by curve 1, Fig. 5. 

Case (1, h) 
We have in this case mx = 0, mz = - 1, n~ = cos ~, 

n~ = sin ct, w0 = cos ~- x and the conditions of  quasi- 
equilibrium existence in the form sin~t (Ra+Rav" 
cos ~) = O. 

The first solution is ct = 0 ° and corresponds to a 
vertical layer subject to longitudinal temperature 
gradient and transversal vibrat ion;  parameters Ra 
and Ray are arbitrary. This case coincides with the 
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Fig. 11. Critical instability parameters as functions of incli- 
nation angle;  solid l ines-- the  critical values Ra~ ,  dashed 
l ines-- the critical wave numbers  km; curves 1---case (/, v) 

curves 2 ~ c a s e  (n, v). 

limiting case ~ = 0 ° for configuration (v, h) ; the results 
of  stability study are presented in Fig. 8. 

The second solution is Ra = - - R a v ' c o s ~ .  This 
means that if  0 ° ~< ~ ~< 90 ° then the quasi-equilibrium 
is possible only for Ra < 0, i.e. for the heating from 
above (temperature gradient is directed along the 
positive z-axis). In the case of  ~ = 0 ° and negative Ra 
the quasi-equilibrium is stable (Fig. 8). In the opposite 
limiting case, ~ = 90 °, the quasi-equilibrium exists 
only in weightlessness, Ra = 0. This state corresponds 
to longitudinal gradient and transversal vibration axis 
and is also stable. To study the stability in all the 
interval 0 ° < ~ < 90 °, the calculations of  charac- 
teristic decrements 2 were performed. Some results 
are given in Fig. 12. The fragment of  ' lower'  part 

2O 

k = 0  

° : 5  
I I I I I 
0 250 500 750 10 000 

Rav 

Fig. 12. The fragment of  decrement spectrum for Pr = 1, 
~t = 30 ° and few values of  k. Solid lines correspond to real 2 
(monotonous  modes), dashed l ines-- to  common  real parts 

2, of  complex-conjugated pairs (oscillatory modes).  
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decrement spectrum (four  ' lowest '  levels) for Pr = 1, 
= 30 ° and a few values of  wave number is presented 

as an example. The: solid lines corresponds to real 
values of  2, the dashed ones - - to  common real parts 
of  the complex---conjugated pairs. As it can be seen, 
the real parts of  all the levels are positive. This means 
that the quasi-equilibrium states considered are stable. 
An interesting feature of  the picture presented is the 
merging of  monoton.ous branches to form the pairs of  
oscillatory disturbances as far as Ra~ increases. Thus 
in the region o f  large Rav the spectrum consists of  
damping oscillatory modes. 

Case (1, t) 
In this case m~ = 0, m, = - 1, n~ = - 1, n~ = 0 and 

w0 = - x .  The equal:ion of  hydrostatics (17) acquires 
the form Ra" sin ~ =: 0. In the case of  weightlessness, 
Ra = 0, we obtain the configuration with a longi- 
tudinal temperature gradient and tranversal vibration 
which is absolutely stable (ref. [7]). I f  the values of  
Ra and Ray are arbitrary then the mechanical quasi- 
equilibrium is possible only for the vertical orientation 
of  the layer with w,~rtical temperature gradient and 
horizontal axis of  viibration ; the boundaries of  stab- 
ility for this case are shown in Fig. 8. 

Case (h, v) 
This case corresp¢ nds to the horizontal temperature 

gradient and vertical axis of  vibration. Now rG = cos 
~, m~=sinc~, n ~ = - s i n ~ ,  n ~ = c o s ~  and w 0 = x .  
Equat ion (17) leads to 

Ra +Rav" cos c~- sin • = 0. (43) 

This relation is a necessary condit ion for quasi- 
equilibrium state existence. Let us consider for defi- 
niteness of  the interval 0 ° ~< ~ ~< 90 °. Then the quasi- 
equilibrium exists only if  Ra is negative (recall that 
Ray > 0 as a definition, equation (9)). Case Ra < 0 
corresponds to the heating from the left side (Fig. 2). 
In the limiting cases of  ~ = 0 ° and ~ = 90 °, quasi- 
equilibrium is pc,ssible only in weightlessness 
(Ra = 0). Case c~ = 90 ° corresponds to an absolutely 
stable configuration with longitudinal temperature 
gradient and transversal vibration [7]. In the case 

= 0 ° we obtain a standard problem of  ther- 
movibrat ional  conw:ctive instability in weightlessness 
for transversal temperature gradient and longitudinal 
vibration [1]; the critical parameters are:  
Ravm = 133.1 and k~ = 1.61. The numerical analysis 
has shown that in all the interval 0 ° ~< ~ ~< 90 ° the 
instability is caused by cellular mode. The critical 
value Ravin is monotonously  increasing while the wave 
number km is monotonously  decreasing as functions 
of  the inclination angle ~; Fig. 11, curves 2. 
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Fig. 13. Critical instability parameters as functions of incli- 
nation angle; solid line---the critical value Ravin, dashed 

line--the critical wave number km; (h,/). 

4 

i I 

I 

- -  :3 

- -  2 a 

- -  ! 

0 
9O 

relation as in the previous case, namely equation (43). 
In the limiting case Ra = 0, c~ ~ 0 ° we obtain the stan- 
dard stability problem for weightlessness with a trans- 
versal temperature gradient and longitudinal axis of  
vibration. In the case Ra = 0 and ~ ~ 90 °, in contrast 
to the case of  (h, v), we have the configuration with 
both longitudinal temperature gradient and axis of  
vibration. This configuration is also absolutely stable. 
Numerical  results are shown in Fig. 13. We see that, 
as far as the angle of  inclination increases, the critical 
wave number increases too. Thus the instability shift 
to the side of  the short-wave modes there takes place. 
Also a very sharp quasi-equilibrium stabilization 
when ~ increases has to be noted. 

Case (h, h) 
This case is degenerate. Indeed, mx = nx = cos~, 

mz = n~ = sin ~, w0 = 0, and we find from equation (17) 
Ra = 0, i.e. the equilibrium is possible only in the case 
of  pure weightlessness at arbitrary Ray. But the case 
at which Ra = 0 and the temperature gradient and the 
axis of  vibration are parallel corresponds to the state 
of  absolute stability. That  was proved in ref. [2] for 
the cavity of  arbitrary form. 

Case (h, t) 
This case is also trivial. I f  mx= cos ~, m~ = sin a, 

nx = - 1 and nz = 0 then w0 = sin a x and equation 
(17) leads to Ra = 0. Thus, as in the previous case, 
quasi-equilibrium is possible only in pure weigh- 
tlessness. We have the configuration at which the 
vibration axis is transversal, while the quasi-equi- 
librium temperature gradient is arbitrarily oriented 
with respect to the layer. This configuration is stable 
(see ref. [7]). 

Case (h, 1) 
This case is in some sense close to the previous one. 

We have now mx =: cosa,  m~ = sina, nx = 0, nz = 1 
and w0 = c o s a ' x .  Equat ion (17) leads to the same 

Case (t, v) 
We have mx = 1, mz = 0, nx = - s i n ~ ,  nz = cosc~, 

w0 = cos ~ - x  and the equation of  hydrostatics (17) 
has the form 
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Ra" cos ct = 0. (44) 

The first root of  this equation, Ra = 0, corresponds 
to the case of  weightlessness, namely, we obtain the 
problem of  thermovibrational convective instability in 
a plane fluid layer subject to transversal temperature 
gradient and arbitrary directed axis of  vibration. This 
problem is solved in ref. [2]. When ~ = 0 °, we have 
the standard configuration with instability parameters 
Ravm = 133.1 and km = 1.61. Then Ravm is mon-  
otonously increasing with increase of  ~ (stabilization) 
and km is decreasing. When ~ ~ 90 ° the following 
asymptotic formulaes are valid : 

Ravin = 2.16" 109(90°-~) 4, k m = 0.018"(90°-ct).  

(45) 

Here the angle of  inclination ~ is given in degrees. 
The second root of  equation (44), ct = 90 °, cor- 

responds to the case of  a horizontal layer with trans- 
versal temperature gradient and transversal axis of  
vibration at arbitrary Ra and Ray. This case is already 
discussed, see Fig. 5, curve 2. 

Case (t, 1) 
Now rex=  1, mz = O, nx = O, nz = 1, Wo = X and 

equation (17) leads to equation (44) as in the previous 
case. The situation of  weightlessness (Ra = 0) cor- 
responds to standard configuration with transversal 
temperature gradient and longitudinal axis of  
vibration. In the case of  cos ~ = 0 °, a = 90 °, we have 
now the configuration in a horizontal layer at which 
both mechanisms of  excitation, thermogravitat ional  
and thermovibrational,  are superimposed, Fig. 6. 

Case (t, h) 
We have r ex=  1, m z = 0 ,  nx=COSa, n z = s i n a ,  

w0 = sin a ' x  and the equation of  hydrostatics in the 
form of  equation (44). The case of  weightlessness 
(Ra = 0) coincides with that described in the case of  
(t, v). In the configuration cos a = 0, ~ = 90 °, we 
obtain the problem of  two mechanisms superimposed, 
Fig. 6. 

Case (t, t) 
Finally consider the configuration at which both 

vectors m and n, are transversal. In this case 
mx = - n x  = 1, mz = nz = 0, w0 = 0 and the relation 
(44) is valid. The mechanical equilibrium state in 
weightlessness (Ra = 0) is now absolutely stable. As 
for the case ~ = 90 °, we obtain the situation at which 
the vertical vibrations stabilize the normal Rayleigh-  
Benard instability in the horizontal layer (Fig. 5, curve 
2). 

6. CONCLUSIONS 

The stability of  quasi-equilibrium state in an 
inclined fluid layer in the presence of  temperature 
gradient subject to static gravity field and high 

vibration is investigated theoretically. The con- 
sideration is based on the equations system describing 
the behaviour of  the averaged field. The layer is ori- 
ented arbitrarily with respect to the gravity accel- 
eration. In the quasi-equilibrium state the temperature 
gradient is constant. All three of  the vectors, gravity 
acceleration, temperature gradient and axis of  
vibration, are assumed to be belonging to the same 
vertical plane. A total of  sixteen configurations are 
considered depending on orientations of  quasi-equi- 
librium gradient and vibration axis with respect to the 
layer. For  each configuration the possibility of  quasi- 
equilibrium is examined and the problem of linear 
stability against two-dimensional disturbances of  nor- 
mal-mode-type is studied. The spectral amplitude 
problems are solved numerically. The stability bound- 
aries and the critical values of  the wave numbers of  
the most dangerous modes are determined. It is shown 
that in some cases, both of  the two mechanisms of  
instability excitation, thermogravitat ional  and ther- 
movibrational,  are superimposed. In other cases the 
stability effect of  high frequency vibrations on the 
normal thermogravitat ional  instability of  Rayleigh-  
Benard nature takes place. 
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